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The stress intensity factor is estimated for an annular crack originating from the particle- 
matrix interface in residual stress fields associated with a spherical particle of lower 
thermal expansion than that of the matrix. It is shown that the stress intensity factor is 
a function of particle size and pre-existing crack length. Spontaneous matrix cracking will 
occur when the particle size exceeds a critical value, Rc. Close agreement between the 
calculated and experimental values for Re is obtained. The analysis is applicable to all 
particulate composites where there is volume increase of a particle induced either by 
phase transformation or thermal expansion mismatch. 

1. Introduction 
It has been recognized by many investigators that 
the second-phase particle dispersed in a brittle 
matrix of different thermal expansion frequently 
serve as a potential source of fracture. Frey and 
Mackenzie [1] observed microcracking in a glass- 
A1203 composite of positive* differential thermal 
expansion and similar effects have been reported 
for BeO-SiC [2] and glass-ThO2 [3] systems. 
Tummala and Friedberg [4] observed weakening 
of a glass-ZrO2 system of positive thermal expan- 
sion difference between the matrix and second- 
phase but they did not indicate if the system was 
microcracked. Rossi [5] reported microcracking 
of a MgO-W composite for volume fractions of 
tungsten greater than 3 vol%. 

Although the maximum thermoelastic stress 
concentration is independent of particle size [6], 
cracks have been observed adjacent to particles 
of certain size only, suggesting that some critical 
particle size, R e, exists below which microfracture 
can be essentially suppressed. This was first 
pointed out by Binns [7] and later confirmed 
by Davidge and Green [3] for the glass-ThO= 
system. However, the analysis proposed by Davidge 
and Green [3] to explain the microcracking 
condition in two-phase materials does not take 

*Positive thermal  expansion is defined as when  %n > C~p, 
the  matr ix  and particle, respectively. 
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into account the effect of pre-existing crack 
length [8] and can only be taken as a crude 
approximation. Furthermore, their analysis does 
not consider the mechanism for crack extension, 
that is, that the stress intensity factor,/s must 
exceed the critical stress intensity factor, KIc, at 
pre-existing cracks located at the particle-matrix 
interface. 

The object of the present paper is to present 
a simple analysis for crack extension in the stress 
fields associated with a spherical particle embedded 
within a homogeneous matrix material having a 
higher thermal expansion than the particle. The 
stress intensity factor, KI, is estimated for an 
annular crack originating from the particle-matrix 
interface in the region of high thermoelastic stress 
field and then the solution is extended to establish 
the critical condition for crack extension. 

2. Analysis 
Due to differences in the thermal expansion co- 
efficients of the matrix and the second-phase 
particle, localized stress fields develop around the 
particles as the body cools from high temperature. 
A spherical particle of radius R will be subjected 
to a uniform pressure P (hydrostatic in nature) and 
the matrix will be subjected to a radial, or, and a 

where a m and C~p are the  thermal  expansion coefficients o f  
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tangential, a0, stress given by the equation [6, 9] 

- -or  = 2Oo 

2s  m " Ep J 

= e , (1) 

where a is the thermal expansion coefficient, AT 
is the temperature difference, u is the Poisson's 
ratio, E is the Young's modulus, r is the distance 
from the centre of the particle, and the subscripts 
m and p refer to the matrix and particle, respec- 
tively. 

Strictly speaking, Equation 1 holds for the case 
of a single particle in an isotropic linear elastic 
matrix. However, since thermoelastic stress in the 
matrix approaches a small value at short distance 
from the particle, i.e., at r =  2R, Equation 1 
represents a satisfactory approximation at low 
volume-fractions of particles. 

When a m < an, the hydrostatic tensile stress 
developed within the spherical particle may 
initiate fracture in the particle, in the matrix 
or in the particle-matrix interface. This con- 
dition will be determined by the elastic and 
fracture properties of the phases involved. When 
am > %,  the tangential stress outside the particle 
will cause the extension of annular cracks origi- 
nating from the particle-matrix interface. For 
this case of crack extension, the thermoelastic 
stress field associated with the spherical particle 
cannot be completely relieved. 

It is generally accepted that fracture in struc- 
tural materials frequently originates from inclu- 
sions, particularly when there is a difference in 
the thermal expansions of the phases. The inci- 
dence of crack extension will be governed by 
the magnitude of stress intensity factor, KI, at 
the cracks associated with the particles. If the 
stress intensity factor exceeds the critical value, 
Kic, for the matrix, then the cracks will extend, 
thereby developing into macrocracks. According 
to Evans [10], the stress intensity factor at small 
statistical flaws located at the interface or in the 
near vicinity of a particle-matrix interface, may 
be obtained by loading the crack faces with the 
tangential component of the thermoelastic stress 
(which is tensile in nature) and integrating over 
the crack length. Since the thermoelastic stress 
concentration imposed on the microflaws located 
outside the spherical boundary is independent of 
particle size, the solution for KI [10] is not a 
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Figure 1 A spherical particle s.ubjected to uniform hydro- 
static compressive stress generated as a result of positive 
thermal expansion coefficient difference, a m > ap. 

strong function of R. However, in the following 
analysis it will be assumed that the crack (of 
length R + c) is kept open by a uniform thermo- 
elastic stress, P, over a part of its surface, as shown 
in Fig. 1. According to Barenblatt [11, 12], the 
stress intensity factor, KI, for an axisymmetrical 
stress distribution, P(r), on both crack surfaces is 

2 (a r 2 )1/2,  K , -  (~a),/a Jo P(r)rdr/(a'-- (2) 

where r is the distance from the centre of the 
particle and a = R + c is the crack length (see 
Fig. 1). 

Consider an annular crack originating from the 
particle-matrix interface in a region of high 
thermoelastic stress concentration, generated as 
a result of a thermal expansion coefficient differ- 
ence, oq n > ~p. In case where e > R ,  and con- 
sidering that the total crack length is a = R + c, 
the stress intensity factor, K~, due to a uniform 
thermoelastic stress P is obtained by substituting 
the value of P from Equation 1 into Equation 2 
and integrating between limits of zero to R + c: 

K' --ae ( s + l  , (3) 

where s = ciR. Although Equation 3 gives correct  
expression for the stress intensity factor for 
s > 1, that is, when the interaction between the 
crack-tip stress field and the thermoelastic stress 
concentration is negligible, it is in error for s < 1. 
A corrected value for the stress intensity factor 
may be obtained by considering the tangential 
stress, (P/2)(R/r) 3 , as acting across the crack 
surfaces in the direction to open the crack. This 
procedure neglects any perturbation caused by 
the presence of the crack and therefore can be 
used only as an approximation. Thus, for s < 1 
the correction factor for the stress intensity 



factor is 

gI = P Tel (4) 

The same correction procedure has been applied 
by Green [13] to account for the influence of 
free surface caused by the annular crack located 
at the surface of a spherical void. The total stress 
intensity factor can now be obtained by the 
addition of Equation 3 and Equation 4: 

(5) 

It should be noted that numerical evaluation of 
Equation 5 shows that the correction term (second 
term in Equation 5) is small in comparison with 
the first term and, for many practical purposes, 
may be neglected. 

To further illustrate the effect of s on the 
stress intensity factor, Fig. 2 shows the change 
of KI for various particle sizes. Equation 5 shows 
explicitly that the stress intensity factor of a 
crack in a highly localized thermoelastic stress 
field associated with the spherical particle is a 
function of particle and defect size. Fig. 3 illu- 
strates the variation of KI as a function of particle 
radius. 

The critical condition for crack extension in 
residual stress field can now be obtained by setting 
KI = Kre = [EGIc ] 1/2 and substituting for P from 
Equation 1 in Equation 5 yielding 
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Figure 2 Variation of stress intensity factor, K I ,  as  a 
function of s and particle radius, R. 
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Figure 3 Variation of stress intensity factor, KI, with 
particle radius and s. 

I1 + p m 1 -- 2up] 
A0~T = [EGIe]I/2 [ 2Em + Ep ] 

• 2 + 1  + ( s+  g ' 

(6) 

where E is the Young's modulus, GIe is the critical 
strain-energy release rate of the matrix and Aa is 
am -- ap. The results of Equation 6 are presented 
graphically in Fig. 4. Equation 6 shows that the 
minimum temperature difference or differential 
thermal contraction required to initiate pre- 
existing cracks is a function of particle radius, 
pre-existing crack length and the elastic and 
toughness properties of both the matrix and the 
second phase. 

The same general approach may be applied to 
the case where a m < ap if suitable crack geometry 
can be anticipated. However, due to the fact that, 
for this particular case (a m < %),  a spherical 
particle is subjected to a uniform hydrostatic 
tensile stress, an energy balance criteria may be 
more appropriate. 

3. Discussion 
The important result of the present analysis is 
that spontaneous matrix cracking in particulate 
brittle composites is governed by the particle 
size, the elastic and toughness properties of the 
matrix and the length of the pre-existing crack. 
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Figure 4 Minimum differential strain (s required to 
initiate crack propagation as a function of particle radius 
and s. 

On cooling from high temperature, thermo- 
elastic stress will arise within each particle, 
regardless of  its size (see Equation 1). Once the 
stress intensity factor, expressed by Equation 
5, exceeds the critical value, Kie, cracks will be 
initiated adjacent to larger particles despite the 
fact that stress will also exist within and around 
small particles which did not satisfy the con- 
dition for crack extension. It  can be inferred 
from Equation 6 that, for a given thermal strain 
(AaAT),  crack extension will occur when the 
inclusion size is larger than a critical value R e. 
Consequently, very small particles ( R ~ R e )  
uniformly distributed in a brittle matrix are a 
prerequisite for the suppression of  crack initi- 
ation. Thus, for a given As  a brittle matrix con- 
taining spherical particles o f  lower expansion 
will tolerate a higher temperature drop if a lower 
particle-size dispersion is incorporated. 

After the crack has been initiated, it will 
propagate some distance into the matrix until 
part of  the stress associated with the particle 
is relieved. At this point crack-arrest will occur. 
A typical example of  this is shown in Fig. 5 for 
a large inclusion of  MgF2 in a LiF matrix. As 
Fig. 5 shows, in some cases two annular cracks 
may originate from the particle-matrix inter- 

b~gure 5 Extension of annular cracks around a MgF 2 
particle dispersed in a LiF matrix. 

face. The critical temperature difference, AT, 
required to initiate annular cracks around a 
MgF2 particle in a LiF matrix, may be obtained 
by substituting reported values into Equation 6 
so that E m = l . 0 2 x 1 0  s M N m  -2, v m = 0 . 2 7 ,  
Ep = 1.419 x l0  s MN m -2 , vp = 0.271 and Gie = 
1.3 J m -2 [14].  For s = 0.1 and R = 10/am, 
Equation 6 predicts a critical value of  A o ~ T  = 
0.6 x 10 -3 . The actual differential strain* devel- 
oped in the sample on cooling from 280~ was 
experimentally determined to be A a A T =  6.1 x 
10 -a . Hence, matrix fracture was unavoidable. 

To further test Equation 6, consider first the 
well-studied glass-ThO2 system [3].  Substituting 
known values of  Gie = 8 J m -2, E m = 7 x 104 
M N m  -2, v m = 0 . 2 ,  Ep = 2 . 5  x 10 s, vp = 0 . 2 7 1 ,  
R = 75/am and s = 0.1 into Equation 6 gives a 
value of  AeAT = 7.5 x 10 -4 . Experimental obser" 
vations have shown that glass containing ThO= 
spheres of  125 to 150/am diameter broke on 
removal from the die. According to Davidge and 
Green [3] the differential strain which developed 
during cooling from the fabrication temperature 
was At~AT = 9.2 x 10 -4 , substantially larger than 
the critical differential strain calculated from 
Equation 6. In order to suppress microcracking 
of  a glass matrix, the maximum particle diameter 
of  ThO~ sphere must not exceed 100/am. Simi- 
larily, for a glass-alumina composite, Equation 5 
predicts that the critical radius, Re, of A1203 
sphere required to extend the cracks (for c = 
OAR) is of  the order of  Re = 50/am. Experimental 
observations made by Frey and Mackenzie [1] 
revealed extensive cracking in this composite 
for alumina particles of  75/am radius. If, how- 

*The LiF-MgF 2 sample was aged at 280~ for an extended time to produce large MgF~ particles and then cooled 
to room temperature. For this system An = 2.4 X 10 -5 ~ and AT= 255~ 
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ever, the same size of  alumina particles are incor- 
porated in a glass matr ix of  A a =  1.4 • 10 -6, 

Equation 6 predicts that  the critical particle radius 

increases to R e ~ 80 / /m.  Thus, in this composite 
the particle size is sub-critical and spontaneous 

matr ix cracking is not  expected to occur. Experi- 
mental observations [1] showed no cracking in 
this composite,  in agreement with Equation 6. 

In the case of  a M g O - W  composite,  where a 
large thermal expansion difference exists between 
the MgO matr ix  (a  = 1.38 • 10 -s ~  E =  
2 .1•  10SMNm -2 and v = 0 . 1 9 )  and the W 
particles (a  = 4.8 • 10 -6,  E = 3.4 • l0  s MN m -2 

and v = 0.3), Equation 6 predicts a minimum 
differential strain required to initiate annular 
cracks o f  A o ~ T =  3.5 • 10 -3 . Assuming no 
stress relaxation during cooling from a hot-  
pressing temperature o f  1400~ the experimental  
value for the differential thermal strain was found 
to be A a A T  = 1.26 • 1.0 -2 , indicating that  matr ix  
cracking must  have occurred. Electron microscopic 
examination revealed a microcrack network in 
composites containing 3vo1% of  W [5].  The 
influence of  stress field interaction may have 
played some role for volume fractions larger than 

3 vol %. In addit ion to stress field interactions, it is 
worth noting that  stress relaxation during cooling 
will always take place and the maximum thermo- 
elastic stress calculated from Equation 1 will be 
overestimated. Therefore, the very close agreement 
between the experimental  and calculated values 
for R e justifies the use of  Equations 5 and 6 for 
estimating the critical condit ion for crack exten- 

sion in residual stress fields. 

4. Summary 
The effect of  particle size on the stress intensity 
factor at small annular cracks in a region of  high 
thermoelastic stress field is estimated. I t  is shown 

that  the stress intensity factor for a m > % ,  is a 
function o f  pre-existing crack length and particle 

radius in the sense that there will always be a 
critical particle radius below which spontaneous 

matr ix  cracking can be suppressed. However, an 
inclusion will be the most  l ikely source of  fracture 
as long as any tensile stress exists in the matr ix 
outside an spherical inclusion. A strong particulate 
composite is expected to be the one with no 
positive differential strain (Aa&T)  present. 
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